

LETTERS TO THE EDITOR

NUMERICAL EXPERIMENTS ON A VIBRATING CIRCULAR PLATE OF NON-UNIFORM THICKNESS AND A CONCENTRIC, INNER, CIRCULAR SUPPORT

R. H. GUTIÈRREZ, R. E. ROSSI AND P. A. A. LAURA

Institute of Applied Mechanics (CONICET) and Department of Engineering Universidad Nacional del Sur, 8000 - Bahia Blanca, Argentina

(Received 12 May 1999)

1. INTRODUCTION

The problem of transverse vibrations of a circular plate of uniform thickness, free edge and an internal, concentric circular support was studied by Bodine in a well-known paper [1, 2].¹

The present note may be considered as a generalization of Bodine's problem in the sense that a circular plate of thickness varying in a discontinuous fashion is considered; see Figure 1. The fundamental frequency coefficient of the structural system is determined by two approximate techniques: (1) the optimized Rayleigh-Ritz method [4], (2) a very accurate and well-known finite element code [5].

2. SOLUTION BY MEANS OF THE OPTIMIZED RAYLEIGH-RITZ METHOD

The governing functional is (see Figure 1)

$$J(W) = \iint_{p} D(\bar{r}) \left[\left(W'' + \frac{W'}{\bar{r}} \right)^{2} - 2(1-\upsilon) \frac{W'W''}{\bar{r}} \right] \bar{r} \, \mathrm{d}\bar{r} \, \mathrm{d}\theta - \rho \omega^{2} \iint_{p} h(\bar{r}) W^{2} \bar{r} \, \mathrm{d}\bar{r} \, \mathrm{d}\theta,$$
(1)

subject to the boundary conditions

$$W(\bar{r}_0) = 0, \qquad W''(a) + \frac{\upsilon}{a} W'(a) = 0,$$
 (2a, b)

$$W'''(a) + \frac{W'(a)}{a} - \frac{W'(a)}{a^2} = 0.$$
 (2c)

¹A recent study [3] concluded that Bodine's results did not possess sufficient accuracy.

Figure 1. Circular plate of non-uniform thickness considered in the present study.

Defining $\eta_h = h_1/h_0$, $r = \bar{r}/a$ and

$$\eta = \begin{cases} 1, & 0 \leq r \leq r_1, \\ \eta_h, & r_1 < r \leq 1. \end{cases}$$

expression (1) becomes

$$\frac{a^2}{2\pi D_0} J(W) = \int_0^1 \eta^3 \left[\left(W'' + \frac{W'}{r} \right)^2 - 2(1-\upsilon) \frac{W'W''}{r} \right] r \, \mathrm{d}r - \Omega^2 \int_0^1 \eta \, W^2 r \, \mathrm{d}r, (3)$$

where $\Omega^2 = (\rho h_0 a^4 \omega^2) / D_0$.

The boundary conditions, expressed in terms of the dimensionless variable r, become

$$W(r_0) = 0, \quad W''(1) + \upsilon W'(1) = 0, \quad W'''(1) + W''(1) - W'(1) = 0.$$
 (4a-c)

Following reference [3] one approximates the displacement amplitude by means of

$$W_a = \sum_{j=1}^{N} C_j \varphi_j(r), \tag{5}$$

where

$$\varphi_j(r) = \alpha_j r^{p+j-1} + \beta_j r^{j+1} + 1$$

The α_j 's and β_j 's are determined substituting φ_j in equations (4a) and (4b) [3]. The fundamental frequency coefficients were determined making N = 9 in (5). The frequency coefficient was, finally, minimized with respect to p [3].

3. FINITE ELEMENT DETERMINATIONS

A well-known finite element code was used [5]. One-quarter of the plate domain was subdivided into 5895 elements resulting in 6043 nodes. The resulting number of equations varied for the different structural configurations considered; see Table 1.

4. NUMERICAL RESULTS

Fundamental eigenvalues $\Omega_1 = \sqrt{(\rho h_0/D_0)} \omega_1 a^2$ were computed for the configuration shown in Figure 1 for several combinations of the geometric parameters $\eta_h = h_1/h_0$. $R_1 = \bar{r}_1/a$ and $R_0 = \bar{r}_0/a$ for the Poissons ratio (v) equal to 0.3.

Table 1 depicts comparison of values of Ω_1 determined by means of the optimized Rayleigh-Ritz method and the finite element algorithmic procedure in the case of a plate of uniform thickness. The agreement is excellent for all the configurations considered, specially if one takes into account the fact that only nine polynomial co-ordinate functions were used when carrying out the analytical procedure.

Tables 2 and 3 show values of Ω_1 for the non-uniform thickness case, determined by means of the optimized Rayleigh-Ritz method and the finite element technique respectively. The agreement is very good from an engineering viewpoint for all the configurations under study. Certainly, for $\eta_h = 0.8$ and $R_1 = 0.6$ the agreement is remarkably good.

In general, the finite element results, presumably of extremely high accuracy, are lower than the upper bounds determined using the analytical approach exception

TABLE 1

Comparison of fundamental frequency coefficients determined by means of the optimized Rayleigh-Ritz method and the finite element technique: case of uniform thickness

	Values of $\Omega_1 = \sqrt{\rho h_0 / D_0} \omega_1 a^2$										
Method Variational	$R_c = 0.1$ 3.910	0·2 4·275	0.3 4.852 4.851	0·4 5·708	0·5 6·930	0.6 8.397	0·7 8·960	0.8 7.810	0·9 6·236	1 4·935	
element Number of equations	3 ^{.909} 17954	4·275 17940	4·851 17 926	5.706 17912	6.929 17900	8·396 17 886	8.959 17 872	7·809 17 858	6·235 17 846	4·935 17 832	

Note: The number of equations employed when using the finite element method is indicated for the sake of completeness.

TABLE 2

Fundamental frequency coefficients of the system shown in Figure 1 determined by means of the optimized Rayleigh–Ritz method $(\eta_h - h_1/h_0, R_1 = \bar{r}_1/a, R_0 = \bar{r}_0/a)$

η_h	R_1	$R_0 = 0.1$	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0.8	0·4 0·5 0·6 0·7	3·864 3·978 4·089 4·127	4·172 4·311 4·456 4·513	4·643 4·831 5·030 5·122	5·301 5·567 5·869 6·018	6·254 6·564 7·010 7·270	7·489 7·787 8·275 8·637	7·965 8·233 8·607 8·880	6·848 7·046 7·330 7·537	5·394 5·538 5·754 5·936	4·222 4·325 4·490 4·644
0.6	$0.4 \\ 0.5 \\ 0.6 \\ 0.7$	3·797 4·098 4·406 4·483	4·024 4·381 4·782 4·912	4·352 4·807 5·356 5·585	4·759 5·364 6·164 6·559	5·397 6·049 7·175 7·867	6·363 6·980 8·181 9·096	6·790 7·387 8·327 8·938	5·714 6·152 6·878 7·363	4·398 4·688 5·203 5·666	3·381 3·570 3·932 4·309

TABLE 3

Fundamental frequency coefficients of the system shown in Figure 1 determined by means of the finite element method

η_h	R_1	$R_0 = 0.1$	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0.8	0·4	3·844	4·144	4.605	5·246	6·195	7·436	7·907	6·801	5·359	4·198
	0·5	3·995	4·333	4.857	5·605	6·606	7·832	8·269	7·072	5·553	4·335
	0·6	4·090	4·457	5.032	5·868	7·012	8·273	8·611	7·328	5·752	4·486
	0·7	4·126	4·511	5.119	6·013	7·259	8·624	8·873	7·531	5·927	4·634
0.6	0·4	3·689	3·892	4·182	4·548	5·186	6·169	6·549	5·517	4·259	3·289
	0·5	4·107	4·392	4·812	5·364	6·028	6·968	7·362	6·117	4·650	3·541
	0·6	4·388	4·758	5·321	6·098	7·071	8·046	8·250	6·787	5·127	3·866
	0·7	4·474	4·898	5·562	6·522	7·792	8·999	8·901	7·322	5·596	4·232

made of the configurations corresponding to $\eta_h = 0.8$ and $R_1 = 0.5$ and also for $\eta_h = 0.6$, $R_1 = 0.5$ and $R_0 \le 0.4$.

This is also the case for some eigenvalues corresponding to $\eta_h = 0.8$ and $R_1 = 0.6$. It is felt that in some instances these differences may be caused by round-off errors, specially when carrying out the analytical procedure.

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program and by Secretaría General de Ciencia y Tecnologia of Universidad Nacional del Sur.

REFERENCES

1. R. V. BODINE 1959 *Journal of Applied Mechanics* 26, 666–668. The fundamental frequencies of a thin flat circular plate simply supported along a circle of arbitrary radius.

- 2. A. W. LEISSA 1969 NASA SP160, Vibration of Plates.
- 3. P. A. A. LAURA, R. H. GUTIÉRREZ, S. A. VERA and D. A. VEGA 1999 *Journal of Sound and Vibration*. Transverse vibrations of a circular plate with a free edge and a concentric circular support.
- 4. P. A. A. LAURA 1995 Ocean Engineering 22, 235–250. Optimization of variational methods.
- 5. ALGOR PROFESSIONAL MECH/VE 1997 LINEAR Stress and Vibration Analysis Processor Reference Manual., Part No. 6000.501 Revision 20.02. Pittsburgh, PA, U.S.A.